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Abstract A modification, based on asymptotic behavior, of the Becker-Döring system is
introduced in which the concentration of monomers is slaved to the concentrations of the
other clusters. This modified system has the same continuum limit as the usual Becker-
Döring system. For one member of the modified systems it is proved, for compact initial
data, that all solutions will converge to the same self-similar form as time tends to infinity.
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1 Introduction

Ostwald ripening is a coarsening process, often associated with a phase transition, in which
droplets or clusters condense from a vapor phase. The Becker-Döring equations have been
commonly used in an effort to understand ripening from a theoretical perspective. They
provide a description of the time evolution of the concentration of cluster sizes phrased in
terms of an infinite set of rate equations. The Becker-Döring equations have been fairly well
studied over the years and many aspects of their behavior are well known. Nevertheless
an important question remains unanswered, namely, whether or not these equations will
converge to the same self similar profile for a wide class of initial data. There is some
evidence from numerical simulations that the solutions of the Becker-Döring equations will
indeed converge to a self similar form [2, 4, 8]. However these calculations are difficult
because the rate of convergence appears to be very slow. Nevertheless, it seems possible that
the Becker-Döring system has the same self similar form for a wide class of initial data.

In this paper, a modification of the Becker-Döring equations will be presented. For one
member of the modified equations we will prove that, for all compactly supported initial
data, the long time behavior can be described by the same self-similar form.
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Let us begin by putting this work in context by first recalling the Becker-Döring equa-
tions, which are

ċj = Fj−1 − Fj for j = 2,3,4, . . . (1)

where cj = cj (t) is the concentration of clusters of size j ; the monomer concentration sat-
isfies

ċ1 = −2F1 −
∞∑

j=2

Fj . (2)

Fj is the rate at which clusters of size j get converted to clusters of size j + 1. The density,
ρ, is

ρ =
∞∑

j=1

jcj .

It is an easy check, for the Becker-Döring system that, formally, ρ̇ = 0. The fluxes take the
form

Fj = ajc1cj − bj+1cj+1 for j = 1,2,3, . . . . (3)

The existence and uniqueness of solutions was established by Ball, Carr and Penrose
[1]. In addition, they prove that if the density ρ, is less than some critical density, ρc , the
long time behavior will result in solutions converging strongly to a unique steady solution.
Physically, this corresponds to a vapor. On the other hand, if ρ > ρc , the long time behavior
of solutions will only result in weak convergence to the unique steady solution. The excess
density will be contained in progressively larger clusters as time increases. This corresponds
to coarsening. It should pointed out this scenario is only true if aj and bj satisfy certain
growth rates [1].

A natural question is whether or not the long time behavior of the excess density can be
described by a self-similar form. One approach to describing the long time behavior of the
excess density is to formulate a continuum approximation of the Becker-Döring equations.
Let us briefly discuss this below.

1.1 LSW Approximation

Here we briefly outline how one can obtain the LSW (Lifshitz, Slyozov, & Wagner) ap-
proximation from the Becker-Döring equations. This derivation was inspired from the work
of Penrose [13]. The discussion below, however, emphasizes certain points that are needed
later in this paper.

In case when ρ > ρc the steady solution of the Becker-Döring equations is denoted γj

where j = 1,2,3, . . . . The critical density is then

ρc =
∞∑

j=1

jγj

It follows from [1] (also see [13]) that

lim
t→∞ cj (t) = γj and lim

t→∞ Fj = 0. (4)
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Next, we introduce a variable � that is chosen to be large enough so that γ� � 1. The ex-
pression for the density is rewritten as

ρ =
�−1∑

j=1

jcj +
∞∑

j=�

jcj .

In view of (4) and our choice of �, the following is a good approximation for large t

ρ − ρc ≈
∞∑

j=�

jcj .

Since ρ − ρc , the excess density, is constant then differentiating the above equation with
respect to time and using summation by parts yields

∞∑

j=�

Fj ≈ 0, (5)

where the approximation F�−1 ≈ 0 for t � 1 has been used (this follows from 4). If the
expression for Fj given by (3) is used in (5) we arrive at the approximation

c1 ≈
∑∞

j=� bj+1cj+1∑∞
j=� aj cj

. (6)

Therefore, to study the long time behavior of the excess density it is a good approximation
to solve (1) for j ≥ � while using (6) for the monomer concentration. In view of (4) and
our choice of � it is reasonable to take F�−1 = 0 as a boundary condition. Finally, we men-
tion that the discrete system given by (1) for j ≥ � along with (6) is nothing more than a
discretization of the LSW equation discussed in the next section.

1.1.1 Continuum Limit

Next we will briefly discuss how to approximate (1) combined with (6) as a partial differ-
ential equation. Let c(x, t) be defined such that cj (t) = c(j, t). a(x), b(x), and F(x, t) are
defined in an analogous way. In addition we will let monomer concentration, c1, be denoted
as u(t). If we assume that all of these functions are smooth in x then one has the approxi-
mation

Fj − Fj−1 ≈ ∂xF

This indicates that (1) maybe approximated by

∂tc + ∂xF ≈ 0

It is convenient to rewrite the fluxes as

Fj = (aju − bj )cj + bj cj − bj+1cj+1

which are approximated as

F ≈ (au − b)c + ∂x(bc).
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The above approximations are combined to give the following partial differential equation,

∂tc + ∂x[(au − b)c] ≈ ∂2
xx(bc). (7)

The continuum approximation of (6) is

u(t) ≈
∫ ∞

�
b(x)c(x, t)dx

∫ ∞
�

a(x)c(x, t)dx

If we ignore the right hand side of (7) and take � = 0 we have the following approximation
to the Becker-Döring system

∂tc + ∂x[(au − b)c] = 0 where u =
∫ ∞

0 bcdx
∫ ∞

0 acdx
. (8)

We will henceforth refer to this as an LSW equation.
If we make the following choice

a = x1/3 and b = 1

then we obtain the well known equation

∂tc + ∂x[(x1/3u − 1)c] = 0 with u =
∫ ∞

0 cdx
∫ ∞

0 x1/3cdx
. (9)

This is often referred to as the LSW equation for diffusion controlled coarsening. On the
other hand if we choose

a = x and b = 1,

then we obtain the simplified LSW equation, proposed by Carr & Penrose [3],

∂tc + ∂x[(xu − 1)c] = 0 with u =
∫ ∞

0 cdx
∫ ∞

0 xcdx
. (10)

The above derivation uses uncontrolled approximations. However, for a class of Becker-
Döring systems Penrose [13] and Niethammer [10] systematically established that their long
time behavior is governed by an LSW equation. It should also be pointed out that the LSW
equation can be derived in other ways. For example, it arises naturally as a mean field model
of clusters or drops connected through a diffusion field. A good review can be found in [16],
but also see [9] and [11]. As a consequence, the long behavior time of the LSW equation
has attracted considerable attention.

The paper of Lifshitz and Slyozov [5] establishes that the LSW equation (9) has a one
parameter family of self similar solutions all with compact support. Exactly one of them is
infinitely differentiable; henceforth denoted the LS self similar solution. Lifshitz and Sly-
ozov argue that this self similar solution will be the one that is selected either when solving
the LSW equation or when examining experimental results. There is some evidence for the
later claim, especially for dilute systems (e.g. Marder [6]). However, the former claim has
generated controversy over the years (see [12] for nice description of the history) and was
only recently put to rest by Niethammer and Pego [12] who prove that it is in fact false.
They prove that long time behavior of the LSW equations depends in a sensitive way on
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the initial conditions, in particular on the size distribution of the largest clusters. Only for
special initial conditions will the LS self similar solution be realized. A similar result was
obtained by Carr and Penrose [3] for the simplified LSW equation given by (10).

If we are to believe the numerical simulations, it seems reasonable to conclude that the
long time behavior of a Becker-Döring system cannot be completely described in terms of
an LSW equation with arbitrary initial conditions. As pointed out by Niethammer [10] (see
Sect. 1.5.4) the Becker-Döring system must somehow create the correct initial conditions for
the corresponding LSW equation. One possibility is to include the diffusion term and study
(7) instead of (8) with the idea that the diffusion term will serve to “prepare the initial data”.
In this way, the long time behavior could be described by the self similar behavior. This idea
has been investigated by Meerson [7], Rubinstein and Zaltzman [14], and Veláquez [15].

In the previous section we argued that the long time behavior of the excess density can
be approximated by the system

ċj = Fj−1 − Fj for j = �, � + 1, � + 2, . . . (11)

where F�−1 = 0, Fj for j ≥ � is given by (3), c1 is given by (6) and � is chosen so that γ� � 1.
In many respects, (11) is no better an approximation to the Becker-Döring system than is
the LSW equation. However, (11) has the advantage that it retains the discrete nature of the
Becker-Döring system. In what follows we shall argue that the discreteness can have an im-
portant effect on the self similar behavior. To explore this issue we will introduce a modifica-
tion of the Becker-Döring system which is somewhat simpler and should retain the essential
characteristics with respect to the long time behavior but is more amenable to analysis.

2 Modified Becker-Döring Systems

Based on the preceding discussion we introduce a modification of the Becker-Döring system
which is as follows. The form of the flux is the same, namely

Fj = ajucj − bj+1cj+1 for j = 0,1,2, . . . (12)

with added restriction a0 = 0. In these equations cj represents the concentration of clusters
of size j + 1 and u denotes the monomer concentration. The time evolution of cj is given
by

ċj = Fj−1 − Fj for j = 1,2,3, . . . . (13)

Motivated by (6), the monomer concentration is taken to be

u =
∑∞

j=1 bj cj∑∞
j=1 aj cj

. (14)

We shall call the set of equations given by (12), (13), and (14) modified Becker-Döring
systems.

The “density” for this modified Becker-Döring is

ρ =
∞∑

j=1

jcj .

It easy to show that, formally, ρ̇ = 0.
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We remark that one can view the modified Becker-Döring system as some sort of long
time approximation to the Becker-Döring system or a first order (in space) upwind dis-
cretization of the generalized LSW system given by (8). It should be pointed out that the
only stationary solution of this modified system is cj = 0, j = 1,2,3, . . . .

2.1 A Modified Becker-Döring System

Carr and Penrose [3] were motivated to arrive at their simplified LSW equation (10) because
it could be solved exactly. Here a similar path will be followed and we will consider the
modified Becker-Döring system with aj = j and bj = 1 which as it turns out can be solved
exactly. As pointed out in Ref. [3] this case is probably not physical but nevertheless the
insight we gain maybe useful in other situations.

With this choice the modified Becker-Döring system we propose to study is

ċj + u(jcj − (j − 1)cj−1) − (cj+1 − cj ) = 0 for j = 1,2,3, . . . (15)

where the monomer concentration is given by

u =
∑∞

j=1 cj∑∞
j=1 jcj

. (16)

The cj ’s are normalized so that ρ = 1 and the equation for the monomer concentration
becomes

u = u(t) =
∞∑

j=1

cj . (17)

Equations (15) and (17) can be viewed as a discretization of (10). It convenient to rewrite
(15) and (17) using

hj = hj (t) =
∞∑

m=j

cm (18)

to obtain

ḣj + u(t)(j − 1)(hj − hj−1) − (hj+1 − hj ) = 0 (19)

where j = Z+ and u(t) = h1. It follows by the application of summation by parts on∑∞
j=1 jcj = 1 that

∞∑

j=1

hj = 1. (20)

Next we observe that since ḣ1 does not depend on h0, we can, therefore, consider (19) for
all j ∈ Z without changing any solution of (19) for j ∈ Z+ (Z denotes the set of all integers
and Z+ the set of all positive integers). We will therefore consider (19) for j ∈ Z with initial
conditions

hj (0) =
{

gj for j > 0

0 otherwise.
(21)

By virtue of (18) it follows that

g1 ≥ g2 ≥ g3 ≥ · · · . (22)
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In addition we will assume that gj will decay faster that any polynomial for large j . More
precisely we demand

lim
j→∞

jpgj = 0 for all p ∈ Z+. (23)

Finally, we point out that when solving (19) and (21) hj (t), will be nonzero for j ≤ 0.
Nevertheless, the evolution of hj for j ≤ 0 has no effect on hj for j > 0. We shall see,
however, it is more convenient to consider (19) for j ∈ Z rather than Z+.

2.2 Solution of the Initial Value Problem

In this section, the initial value problem for (19) and (21) will be solved. When considering
discrete problems it is natural to consider the discrete Fourier transform of hj ,

ĥ(k) =
∞∑

j=−∞
hje

−ijk (24)

and its inverse

hj = 1

2π

∫ π

−π

eijkĥ(k)dk. (25)

For our purpose it is useful to modify this as follows; we let eik = 1 + iω and make the
definition H(ω) ≡ ĥ(k) then (24) becomes

H(ω) =
∞∑

j=−∞
hj (1 + iω)−j

and (25) becomes

hj = 1

2π

∫

B

H(ω)(1 + iω)j−1dω (26)

where B is a circle of radius one that encloses the point ω = i.
Equation (19) is multiplied by 1/(1 + iω)j and summed over all j ∈ Z to obtain

∂tH − u(t)ω∂ωH = (u(t) + iω)H

with initial conditions

H(ω,0) = H0(ω) =
∞∑

j=1

gj

(1 + iω)j
. (27)

The partial differential equation for H can be solved by the method of characteristics.
Let

U = U(t) =
∫ t

0
u(s)ds and v = v(t) =

∫ t

0
e−U(s)ds, (28)

then we have

H(ω, t) = eUH0(ωeU ) exp(iωveU ).
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Combining the above result with (26) we arrive at

hj = 1

2π

∫

B

H0(ωeU) exp(iωeU)(1 + iω)j−1dω.

Next, we let θ = ωeU and use (27) to obtain

hj = e−v

2π

∞∑

m=1

∫

B

gm

(1 + iθ)m
e(1+iθ)v(1 + iθ v̇)j−1dθ. (29)

It is apparent we will have an explicit expression for hj once v(t) is known. To determine
v(t) we note that since u(t) = h1 it follows that

u = e−v

2π

∞∑

j=1

∫

B

gj

(1 + iθ)j
e(1+iθ)vdθ.

In the above expression, the integrals are easily evaluated using the calculus of residues to
reveal

u = e−v

∞∑

j=1

gjv
j−1

(j − 1)! . (30)

It follows from (28) that v̇ = exp(−U) and v̈ = −v̇u. Therefore one has

v̈

v̇
= e−v

∞∑

j=1

gjv
j−1

(j − 1)! .

This maybe integrated once in v to obtain

v̇ = e−v

(
1 +

∞∑

p=1

αpvp

p!

)
where αp =

∞∑

m=p+1

gm, (31)

where we have used (20). Let us now return to (29) and deduce an expression for hj in terms
of v = v(t). To begin we rewrite (29) as

hj = e−v

∞∑

m=1

gmIm (32)

with

Im = 1

2πi

∫

B0

ezv(zv̇ + 1 − v̇)j−1

zm
dz (33)

where B0 is a closed path in the complex plane the encloses the origin. The expression for
Im can be evaluated using the calculus of residues. We find for j ∈ Z+ that

I1 = (1 − v̇)j−1,

I2 = (1 − v̇)j−1v + (j − 1)(1 − v̇)j−2v̇,
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and in general

Im =
m∑

k=1

1

(m − k)!
(

j − 1
k − 1

)
(1 − v̇)j−kv̇k−1vm−k.

Upon substituting the above expression into (32) one finds

hj = e−v

∞∑

k=1

(
j − 1
k − 1

)
(1 − v̇)j−kv̇k−1Sk

where

Sk =
∞∑

m=k

gmvm−k

(m − k)! .

Finally we use the expression for u, (30), to obtain

hj = u(1 − v̇)j−1 + e−v

∞∑

k=2

(
j − 1
k − 1

)
(1 − v̇)j−kv̇k−1Sk. (34)

3 Asymptotic Behavior of Solutions

3.1 A Simple Case

We observe that if

gj =
{

1 for j = 1

0 otherwise
(35)

then the equation for v becomes

v̇ = e−v.

Recalling that v(0) = 0 it easy to see that the solution for v is

v = log(1 + t).

If we substitute the above formula for v into (30) we obtain

u = 1

1 + t
.

Finally we use the expressions for u and v combined with (35) in (34) to obtain the following
solution to our modified Becker-Döring equation

hj = 1

1 + t

(
t

1 + t

)j−1

.

Next, the asymptotic behavior will be examined. Notice that since (1 − t−1)t = e + O(t−1)

as t → ∞ then we can write

hj = t−1H1(j/t, t)
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where

H1(J, t) = e−J (1 + O(t−1)) as t → ∞ provided J = O(1).

It is clear that hj converges to a self similar solution at a linear rate.

3.2 A More General Result

The differential equation (31) does not have an explicit solution, however, we are able to
obtain an asymptotic solution with enough accuracy for our needs. We will consider initial
data of the form given by (27) with the added restrictions

gj = 0 for j > N + 1 (36)

and

g1 > g2 > · · · > gN+1. (37)

We remark that in terms of the densities (36) and (37) can be expressed as:

cj = 0 for j > N + 1

and

cj > 0 for j = 1,2, . . . ,N + 1.

In material that follows it will proved that, for the initial conditions described above, the
solution of (19) converges to the self-similar solution hj = t−1 exp(−j/t). In addition, the
rate of convergence will be shown to be logarithmic in time.

3.2.1 Behavior of v

For the class of initial data described above (31) becomes

v̇ = e−vp(v) where p(v) = 1 +
N∑

j=1

αjv
j

j ! . (38)

At this time is also convenient to rewrite the expression for the monomer concentration (30)
as

u = e−vq(v) where q(v) =
N+1∑

j=1

gjv
j−1

(j − 1)! . (39)

We observe that both p and q are N th order polynomials and they satisfy the following
relationship

q(v) = p(v) − p′(v). (40)

Next we let ψ = ψ(t) satisfy the following equation

e−ψq(ψ) = 1

t + τ
. (41)
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In what follows we shall prove that

v(t) = ψ(t) + o

(
1

log t

)
as t → ∞ (42)

provided τ is chosen sufficiently large. Before the above result is verified let us establish
some properties of ψ . By rewriting (41) as

ψ = log(t + τ) + log(q(ψ))

one can show

ψ = log(t + τ) + log(q(log(q(log(t + τ) · · · .
It follows from the definition of q that

g1 ≤ q(ψ) ≤ g1e
ψg2/g1 ,

If the above inequality is multiplied by e−ψ and (41) is used, the following estimate can be
obtained

log[(t + τ)g1] ≤ ψ ≤ log[(t + τ)g1]/(1 − g2/g1).

This implies

ψ = O(log t) as t → ∞. (43)

The proof of (42) begins by introducing the following new variable as follows

v(t) = ψ(t) − r(t). (44)

If we substitute (44) into (31) we obtain the following ordinary differential equation for r

ṙ = e−ψp(ψ) − e−ψ+rp(ψ − r) + G(ψ)

t + τ
≡ F(t, r, τ ) (45)

where

G(ψ) = (p′(ψ))2 − p(ψ)p′′(ψ)

q(ψ)(q(ψ) − q ′(ψ))
.

Since v(0) = 0 it follows that the initial condition for (45) is

r(0) = r0 where e−r0q(r0) = 1

τ
. (46)

For τ > 1 there exists a unique positive value of r0. We note that the numerator of G is a
polynomial in ψ of order 2N − 2 whereas the denominator is a polynomial of order 2N .
This combined with (43) implies

G(ψ(t)) = O

(
1

log2 t

)
as t → ∞. (47)

It follows from (39) and (36–37) that q and q − q ′ are both positive. We also observe
(p′)2 − pp′′ = −p2(p′/p)′. Since p = p(ψ) is polynomial of finite order it follows that
p′/p must be a deceasing function for sufficiently large values of ψ therefore we have
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G(ψ) > 0 provided that ψ is sufficiently large. Since ψ(t) > r0 for all t > 0 we can pick
τ sufficiently large so that G(ψ) > 0 for all t > 0 (recall r0 is an increasing function of τ ).
For this choice of τ we have F(t,0, τ ) > 0. Since r(0) = r0 > 0 then r ≥ 0.

Next we shall establish that limt→∞ r(t) log t = 0. By examining the properties of p and
q one can verify that (e−ψp(ψ))′′ > 0. Therefore the following inequality is true

e−ψp(ψ) − e−ψ+rp(ψ − r) < − r

t + τ
. (48)

Upon combining (45) and (48), the following differential inequality is obtained

ṙ ≤ − r

t + τ
+ G(ψ)

t + τ
for t > 0. (49)

The above inequality is integrated in time to deduce the following estimate

0 ≤ r ≤ τr0

t + τ
+ 1

t + τ

∫ t

0
G(ψ(s))ds. (50)

The lower bound follows from the discussion below (47). One can establish, using
L’Hospital’s rule together with (47) and (50), that

r(t) = o

(
1

log t

)
as t → ∞. (51)

This completes the proof of (42).

3.2.2 Behavior of v̇ and u

With the behavior of v now known we can use (38) and (39) to find the asymptotic behavior
of v̇ and u. To begin, we substitute (44) into (38) to obtain

v̇ = e−ψ+rp(ψ − r). (52)

It follows from (41) and (40) that

e−ψp(ψ) = 1

t + τ

(
1 + p′(ψ)

q(ψ)

)
. (53)

Therefore we can write (52) as

v̇ = 1

t + τ

(
1 + p′(ψ)

q(ψ)

)
+ e−ψ+rp(ψ − r) − e−ψp(ψ). (54)

We recall that ψ = O(log t); since both p and q are polynomials of the same order we have
p′(ψ)/q(ψ) = O(1/ log t). This combined with (48) and (51) in (54) yields

v̇ = 1

t + τ

(
1 + O

(
1

log t

))
. (55)

A similar argument shows

u = 1

t + τ

(
1 + o

(
1

log t

))
. (56)
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3.2.3 Behavior of hj

With the above results we can now determine the long time behavior of hj . For the case at
hand we have

hj = u(1 − v̇)j−1 + e−v

N+1∑

k=2

(
j − 1
k − 1

)
Sk(1 − v̇)j−kv̇k−1. (57)

We define the rescaled size

J = j/t

and note
(

j − 1
k − 1

)
1

tk−1
= J k−1

(k − 1)! + O(t−1). (58)

Next we use a Taylor expansion to obtain

e−vSk(v) = e−ψ+rSk(ψ − r) = e−ψSk(ψ)[1 + O(r)].
The above equation is rewritten, using (41), as

e−vSk(v) = 1

t + τ

Sk(ψ)

q(ψ)
[1 + O(r)].

We observe that Sk(ψ) is a polynomial of order N + 1 − k and recall q(ψ) a polynomial of
order N . This combined with (43) and (51) yields for k ≥ 2

e−vSk(v) = 1

t + τ
O

(
1

(log t)k−1

)
as t → ∞. (59)

One can use (55) to show

(1 − v̇)j−kv̇k−1 = e−J

tk−1

[
1 + O

(
1

log t

)]
as t → ∞. (60)

We now substitute (56), (58), (59), and (60) into (57) to obtain

hj = t−1H(j/t, t)

where

H(J, t) = e−J [1 + E(J, t)] as t → ∞ provided J = O(1)

with

E(J, t) = O

(
1

log t

)
+

N+1∑

k=2

J k−1

(k − 1)!O
(

1

(log t)k−1

)
.

We note that limt→∞ E(J, t) = 0. This implies that for the initial conditions (36–37) the
solution of (19) converges to the self-similar form hj = t−1 exp(−j/t). In addition the rate
of convergence is logarithmic in time. This indicates the rate of convergence is rather slow.
This is consistent with the observations of Meerson et al. [8].
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This self similar form was also found by Carr and Penrose for (10) as should be ex-
pected. However, they also prove that the asymptotic behavior of (10) for compact initial
conditions depends on the order of the zero at the leading edge of the support. In particular,
t−1 exp(−x/t) is only realized when the initial condition goes to zero exponentially fast as
one approaches the leading edge of the support. Our result establishes for the discrete form
of (10) that asymptotic behavior is the same for all compactly supported initial conditions.
Therefore, the discrete nature of (15) provides a mechanism to select the same self similar
profile for all compactly supported initial conditions.

4 Conclusions

In this paper a modified version of the Becker-Döring equations has been introduced. This
approximation can viewed in two ways. The first is that it can be thought of as a first order
upwind discretization of the corresponding LSW equations. It can also be thought of a sys-
tem of equations that approximates the long time behavior of the Becker-Döring equations
in which the monomer concentration is slaved to the concentrations of the other clusters.
We are able to prove, for one member of these modified Becker-Döring equations, that the
long time behavior is described by the same self similar form for compact initial condi-
tions. The results show that the convergence rate is logarithmically slow. This work sug-
gests that it might be easier to understand the long time behavior of Becker-Döring systems
by examining the associated modified system rather than the corresponding LSW equa-
tion.

Acknowledgements I thank J. Conlon for helpful discussions. This research was supported, in part, by
NSF grants DMS-0509124 and DMS-0553487.

References

1. Ball, J., Carr, J., Penrose, O.: The Becker-Döring cluster equations: basic properties and asymptotic
behavior of solutions. Commun. Math. Phys. 104, 109–116 (1988)

2. Bonilla, L.L., Carpio, A., Farjoun, Y., Neu, J.C.: Asymptotic and numerical studies of the Becker-
Döring model for transient homogeneous nucleation. Markov Process. Relat. Fields 12, 341–365
(2006)

3. Carr, J., Penrose, O.: Asymptotic behavior of solutions to a simplified Lifshitz-Slyozov equation.
Physica D 124, 166–176 (1998)

4. Carr, J., Duncan, D.B., Walshaw, C.H.: Numerical approximation of a meta-stable system. IMA J.
Numer. Anal. 15, 505–521 (1995)

5. Lifshitz, I.M., Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys.
Chem. Solids 19, 35–50 (1961)

6. Marder, M.: Correlations and Ostwald ripening. Phys. Rev. A 36, 858–872 (1987)
7. Meerson, B.: Fluctuations provide strong selection in Ostwald ripening. Phys. Rev. E 60, 3072–3075

(1999)
8. Meerson, B., Sander, L., Smereka, P.: The role of discrete particle noise in the Ostwald ripening. Eur. J.

Phys. 72, 604–610 (2005)
9. Niethammer, B.: Derivation of the LSW theory for Ostwald ripening by homogenization methods. Arch.

Ration. Mech. Anal. 147, 119–178 (1999)
10. Niethammer, B.: On the evolution of large clusters in the Becker-Döring model. J. Nonlinear Sci. 13,

115–155 (2003)
11. Niethammer, B., Otto, F.: Ostwald Ripening: The screening length revisited. Calc. Var. PDE 13, 867–902

(1999)
12. Niethammer, B., Pego, R.L.: Non-self-similar behavior in the LSW theory of Ostwald ripening. J. Stat.

Phys. 95, 867–902 (1999)



Long Time Behavior of a Modified Becker-Döring System 533

13. Penrose, O.: The Becker-Döring equations at large times and their connection with the LSW theory of
coarsening. J. Stat. Phys. 89, 305–320 (1997)

14. Rubinstein, I., Zaltzman, B.: Diffusional mechanism of strong selection in Ostwald ripening. Phys. Rev.
E 61, 709–717 (2000)

15. Veláquez, J.J.L.: The Becker-Döring equations and the Lifshitz-Slyozov theory of coarsening. J. Stat.
Phys. 92, 195–236 (1998)

16. Voorhees, P.W.: The theory of Ostwald ripening. J. Stat. Phys. 38, 231–252 (1985)


	Long Time Behavior of a Modified Becker-Döring System
	Abstract
	Introduction
	LSW Approximation
	Continuum Limit


	Modified Becker-Döring Systems
	A Modified Becker-Döring System
	Solution of the Initial Value Problem

	 Asymptotic Behavior of Solutions
	A Simple Case
	A More General Result
	Behavior of v
	Behavior of v and u
	Behavior of hj


	Conclusions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


